

CELLOCATOR Cello-IQ Installation & Calibration

Cello-IQ - Driving Intelligence Delivered. January, 2013.

Objectives

By the end of this lesson you will be able to:

- Get familiar with Cello-IQ installation principles and emphases
- Get familiar with Cello-IQ harnesses and accessories
- Understand and manage the calibration process

Topics

Introduction

- Installing Cello-IQ and DFD
- Harness types
- Calibration process
- Troubleshooting & FAQ

Installation and Calibration Introduction

Cello-IQ functionality is based on continuous sampling of vehicle dynamics

- A calibration process is required to compensate installation tilt and rotation of the device
- Driver behavior analysis starts after the completion of the automatic calibration process
- Correct installation of the device is crucial for the success of the calibration process and continuous device functionality

Installation and Calibration Installation process

Topics

- Introduction
- Installing Cello-IQ and DFD
- Harness types
- Calibration process
- Troubleshooting & FAQ

Installing Cello-IQ and DFD Location of Cello-IQ in the Vehicle

When choosing location for the device installation within the vehicle, please consider the following:

POINTER

Installing Cello-IQ and DFD Location of Cello-IQ in the Vehicle

Where would be the best location for the installation?

Installing Cello-IQ and DFD

Location of Cello-IQ in the Vehicle

Preferred Locations for Installing vs. Non Recommended Locations

locations

St

Ð

 \mathbf{m}

Behind the dashboard

- In or behind the glove compartment
- Front of the passenger compartment under the console and above the leg space
- Under the driver's seat
- In passenger car's trunk
- External GPS antenna providing greater flexibility
 close to the front windshield or rear window

Never Insta

- Outside passenger compartment or vehicle trunk
- In the engine compartment
- Inside bumpers or fenders
- Behind the front lights
- In air ducts
- Close to airbags
- Under the vehicle
- In a location susceptible to rain or water
- Inside a metal pocket or box
- In the loading area of a truck or pickup
- Near the fuel tank
- Near the wheels
- Near any radio transmitter or its antenna

Installing Cello-IQ and DFD Installing Cello-IQ

- Rigid installation
- Avoid installation near a moving or rotating part of the vehicle
- Preferably attached to the <u>vehicle's chassis</u> or a solid part strongly attached to it
- Use thick double-sided adhesive and plastic ties to secure the device firmly to its location

Installing Cello-IQ and DFD Installing Cello-IQ

- Ensure optimal reception
- Keep at least 30 cm between the device and any computerized system in the vehicles, to avoid electromagnetic interference
- Install the device face up with a clear sky view
- Avoid installing under a metal cover or within metal pocket or box
- Lookout for transparent metallic coating on windows
- In these cases, use external GPS antenna and consult with the dealer regarding best locations for installation

Installing Cello-IQ and DFD Installing Cello-IQ

Device protection

- Avoid installation exposed to a direct sun light
- If installing inside doors space, make sure it is not susceptible to cleaning water and rain
- Conceal device to avoid theft

Installing Cello-IQ and DFD Device Orientation

The device orientation may influence reception and calibration process

Installing Cello-IQ and DFD

Using External GPS Antenna

Best Practices when using an external GPS antenna

Installing Cello-IQ and DFD Installing DFD

When installing the DFD (Driver Feedback Display):

- Select a location that provides clear view of the device display without taking driver's eyes off the road
- Make sure it does not block driver's view of the road
- Rotate device to be angled towards the driver's face
- Avoid direct sun light for device protection and better view of lights and icons
- Mount it to the dashboard using either double-sided adhesive or screws
- Connect the DFD cable to the DFD thread of the Cello-IQ harness

Topics

- Introduction
- Installing Cello-IQ and DFD
- Harness types
- Calibration process
- Troubleshooting & FAQ

Harness types Introduction

There are 4 types of harnesses available for Cello-IQ

- Cello-IQ Harness
- Cello Full Harness
- OBD Harness
- Fuse Harness

Harness types Cello-IQ Harness

- The Cello-IQ utilizes a special harness, PN 711-00299
 - Harness designed for DFD connectivity and common DBM operations
 - Special connector that fits the DFD cable connector for easy installation
 - Dallas (driver identification) , LED, I/O ports supported
 - Voice kit not supported

Harness types Cello Full Harness

- The full harness (PN 711-00196) for Cellocator Cello unit
 - 15 jacketed cables, connected to a 20-pin connector
 - Enables utilization of all available interfaces such as I/O, driver identification devices, hands free kit, serial communication external device (including DFD) etc.
 - Allows for future expansion of other device I/Os

Harness types OBDII Harness

711-00250 OBDII Harness for fast and easy installation

- 2-wires power only harness
- Connects the Cello unit to an OBDII standard connector in the vehicle or driver cabin
- Very fast and easy installation that doesn't require professional technician
- Ignition sense replaced by 3-D accelerometer movement and engine status detection embedded in Cello-IQ unit
- Attractive low cost solution for rental or leased cars, vehicle owners, low-end fleet management etc.

Harness types

Cellocator Fuse Harness

Fuse Harness for quick and easy installation

- 2-wires power only harness
- Connects Cellocator unit to a standard or mini fuse holder, located in a fuse box in the vehicle or driver cabin
- Shortens installation time dramatically when simple track and trace applications are involved
- Ignition sense replaced by 3-D accelerometer movement and engine status detection embedded in Cello unit
- Attractive low cost solution for many applications

Harness types

Cello-IQ connectivity

 Connectivity to important interfaces for DBM applications such as Driver identification device and Immobilizer

POINTER

Pointer Telocation Ltc

Topics

- Introduction
- Installing Cello-IQ and DFD
- Harness types
- Calibration process
- Troubleshooting & FAQ

Introduction to calibration

Introduction to calibration

Cello-IQ functionality is depended on an accurate calibration process

- Calibration process results in a calibration matrix, which compensates installation tilt and rotation of the device
- The device functionality will start upon a successful calibration
- On-board automatic calibration frees the installer from aligning the device to the vehicle movement direction or ground level
- Requires device orientation of less than 60 degrees tilt, facing up to sky view
- Calibration process normally last 2-5 driving hours
- The calibration matrix can be obtained at any time

Calibration methods

There are 2 methods to operate calibration:

Automatic calibration

Calibration during normal driving is needed to determine the orientation of the equipment in a vehicle.

Manual calibration

Operated during evaluation / debugging in order to accelerate calibration time in a newly installed device.

How to start calibration?

A calibration process will start upon three events:

Automatically

• This process begins automatically upon power up if the unit is not found to be already calibrated

Manually

• Triggered by a command from the server

Upon Calibration Error Detection

- If enabled, upon detection of error, an event is initiated to the CSA server then auto-start the calibration process
- If disabled, the system will wait for an OTA calibration command

What happens during calibration process?

- During the calibration process, the unit learns its exact position relative to the driving direction and ground level
 - Calibration is identified as a CSA event a message containing general information of an occurrence including GPS stamps
 - During calibration the system will detect and analyze only Idling,
 Speeding and Excessive RPM events

What happens during calibration process?

The Calibration goes through 2 phases

 Stationary events and decelerations are detected and analyzed during the 2 phases in order to calculate the compensation required for the unit's installation orientation

Each phase is a test (step) repeated until convergence is reached

• Non similar test result will fail the step

Multiple steps without convergence causes Calibration Failure

• Non secured unit that changes position during vehicle movement, might cause calibration failure

Unit starts functioning on calibration success

Only Over Speeding, Excessive Idling & Excessive RPM detected during calibration
 Off Road calibration starts upon phase 1 completion and managed independently

Process status monitoring

How will you know the calibration status?

 \Box

Ca

Phase 1

- DFD will display Green Led light in the color array display
- Idling, speeding and Excessive RPM visual and audio notification only
- Phase 2
- DFD will turn off Green light and display Yellow Led light in the color array display
- Idling, speeding and Excessive RPM visual and audio notification only
- Calibration Success
- DFD starts visual and audio notifications for ALL maneuvers

• Phase 1

- Continuous report of Calibration state thru CSA Events
- Phase 2
- Continuous report of CSA Event for each step
- Total of 20 notifications for all steps
- Calibration Success
- Event sent with reason of Calibration status - success
- Calibration matrix sent to server
- Status bit ON

Φ

- Calibration failure
- No completion of calibration process
- Calibration Auto-Start initiated over and over again
- Event sent with reason of Calibration status Error

Manual calibration

How can you shorten calibration process time?

- Manual calibration can be operated in order to accelerate the time to reach calibration
- Calibration process can be done within less than 30 minutes
- Manual calibration involves idling events and decelerations performed as detailed in the CSA Programming Manual
- Any type of reset in the middle of a stage will restart it

Replacing a unit

What happens if the unit needs to be replaced?

- If installed at exactly the same location and deviation, there is no need for re-calibration
- If not re-installed exactly at the same previous position, the unit will not behave correctly. Therefore, It is crucial to send "calibration leave" and "calibration start " commands

Cellocator Cello-IQ – Let's take a ride

Cello-IQ – Driving Intelligence Delivered